Some Results on Restrained Triple Connected Domination in Line Graphs

G. Mahadevan^{**} and V.G. Bhagavathi Ammal^{*}

**Asst. Prof. Department of MathematicsGandhigram Rural Institute-Deemed University Gandhigram- 624 302. Dindigul District. Tamil Nadu *Asst. Prof. PG Department of Mathematics Sree Ayappa College for Women Chunkankadai, Nagercoil Kanyakumari District 629003 E-mail: **drgmaha2014@gmail.com, *bhagavathianand@gmail.com

Abstract—The concept of Restrained triple connected graph was introduced by G.Mahadevan in [3]. A set $D \subseteq V(L(G))$ is a Restrained Triple Connected Dominating (RTCD) set of L(G), if every vertex not in D is adjacent to a vertex in D and to a vertex in V-D and $\langle D \rangle$ is triple connected. The RTCD number of a line graph L(G) is denoted by $\gamma_{rtc}(L(G))$ is the minimum cardinality of a RTCD set of L(G). In this paper, we discuss the graph theoretic properties of $\gamma_{rtc}(L(G))$ and its exact values for some standard graphs were obtained. The relationship with other parameter is also investigated. We characterize graphs which do not have γ_{rtc} set. We obtained the upper and lower bounds of $\gamma_{rtc}(L(G))$. We also proved the Nordhaus-Gaddum types of results of this parameter.

Keywords: Restrained triple connected domination number, Line graphs AMS Subject Classification: 05C

1. INTRODUCTION

By a graph we mean a finite, simple, connected and undirected graph G(V, E). A subset S of V of a nontrivial graph G is called a *dominating set* of G if every vertex in V - S is adjacent to at least one vertex in S. The domination number $\gamma(G)$ of G is the minimum cardinality taken over all dominating sets in G. A graph G is said to be triple connected if any three vertices lie on a path in G. A dominating set is said to be restrained dominating set if every vertex in V - S is adjacent to at least one vertex in S as well as another vertex in V - S. The minimum cardinality taken over all restrained dominating sets is called the restrained domination number and is denoted by $\gamma_r(G)$. The restrained dominating set is said to be restrained triple connected dominating set (RTCD), if the <S> is triple connected. The minimum cordiality taken over all the restrained triple connected dominating sets is called the restrained triple connected domination number and is denoted by $\gamma_{\rm rtc}(G)$.

* This work was supported by the University Grants Commission-Special Assistance

Program (Departmental Special Assistance-I), Government of India, New Delhi With every non empty ordinary graph there is associated a graph L(G), called the line graph of G whose points are in one-to-one correspondence with the lines of G and such that two points are adjacent in L(G) if and only if the corresponding lines of G are adjacent.

1) Restrained Triple connected domination number in Line Graph

Definition 2.1: The restrained dominating set is said to be restrained triple connected dominating set (RTCD), if the $\langle S \rangle$ is triple connected. The minimum cordiality taken over all the restrained triple connected dominating sets is called the **restrained triple connected domination number and is denoted by** γ_{rtc} (*G*). With every non empty ordinary graph there is associated a graph L(G), called the line graph of G whose points are in one-to-one correspondence with the lines of G and such that two points are adjacent in L(G) if and only if the corresponding lines of G are adjacent.

Example:

Fig. 2.1: $\gamma_{rtc}(L(K_4) = 3$

In this paper, we study the graph theoretic properties of $\gamma_{rtc}(L(G))$ and its exact values for some standard graphs were obtained. The relationship with other parameter is also investigated **3.** Exact Values of $\gamma_{rtc}(L(G))$ for some standard graphs:

1.
$$\gamma_{rtc} (L(C_p) = p - 2$$

2. $\gamma_{rtc} (L((P_p) = q$
3. $\gamma_{rtc} (L((K_p) = 3$
4. $\gamma_{rtc} (L((K_{1,p}) = p, if p = 3, 4$
5. $\gamma_{rtc} (L((C_{2,3}) = 3$
6. $\gamma_{rtc} (L(K_{1,p}) = 3, p \ge 5$
 $(L(K_{1,p}) = K_{p-1})$
7. $\gamma_{rtc} (L(K_{1,p}) = p - 1, p = 4, 5$
8. $\gamma_{rtc} (L((w_{1,p}) = 3)$

Observations 3.1:

- 1. Every graph L(G) without isolated vertex has a RTCD set as $V(L(G) \ge 3$
- 2. The RTCD set contains all its pendent vertices, supports and the vertices of degree 2. Hence $\gamma_{rtc}(L(C_p) = p - 2)$
- 3. For any connected graph with $\delta(G) \ge 2$ then $\gamma_{rtc} (L(G) \le q$
- 4. For any connected graph G, $\gamma_{rtc}(G) = \gamma_{rtc}(L(G))$ and the equality satisfied for cycles and complete graphs
- 5. For any connected graph G, $\gamma_{rtc}(L(G) = q$ and the equality satisfied for a path graph
- 6. A RTCD number of a connected graph is isomorphic to its line graph if it is a cycle that is, $G \cong (L(G))$ if and only if G is a regular graph of degree 2.
- 7. If the line graph of a connected graph G is a tree then γ_{rtc} does not exist.
- 8. For any connected graph G with 3 vertices $\gamma_{rtc}(L(G)) = p$ if and only if $G \cong K_3$

Theorem 3.2: For any connected graph G with $p \ge 3$, then $3 \le \gamma_{rtc}(L(G)) \le q$.

Proof: The lower bound and the upper bound follow from the definition 2.1 and 2.2.

For $K_{1,p}$ lower bound is attained and For Path graph, upper bound is attained.

Theorem 3.3: If every non end vertex of a tree T is adjacent to at least one end vertex then $\gamma_{rtc}(L(T)) \le p + m$ where m is the number of end vertices of L(T)

Consider the tree of vertex greater than or equal to 4. Let $X = \{v_{1,}v_{2,\dots,v_{m}}\}$ be the end vertices of T and if the non end vertex have exactly one end vertex then there should be an end vertex in L(T) also, Every $k_{1,n}$ of T form a complete sub graph k_n of L(T)

Case(i) : L(T) does not contain end vertex.

Let D= { v_1, v_2, \dots, u_i }, D \geq V(L(T)) is the γ_{rtc} set of L(T)

Hence $\gamma_{rtc}(L(T)) = D$

Case(ii): L(T) contains end vertex, $X = \{v_1, \dots, v_m\}$

Hence $\gamma_{rtc}(L(T)) = D \cup \{v_1, v_2, \dots, v_m\} = D \cup X$

 $|\gamma_{rtc}(L(T))| = |D+m| \le p+m$

Hence $\gamma_{rtc}(L(T)) \leq p + m$, where m be the end vertices of L(T)

Theorem 3.4: If every non end vertex of a tree T is adjacent to at least one end vertex then $\gamma_{rtc}(L(T)) = \lfloor p + 2 \rfloor$.

Proof: If every non end vertices of T is adjacent to at least one end vertex, then T is the combination of stars such as $K_{1,3}, K_{1,4}, \dots, K_{1,n}$, thus L(T) is the combination of complete graph. Hence L(T) does not contain end vertices.

$$\begin{aligned} \gamma_{rtc} \left(L(T) \right) &\leq q - 2 \\ \gamma_{rtc} \left(L(T) \right) &\leq p - 1 - 2 \\ \gamma_{rtc} \left(L(T) \right) &\leq p - 3 \end{aligned}$$

If some non end vertices of T is adjacent to at least one end vertex, then T is the combination of paths and stars. Obviously L(T) contains end vertices

$$\gamma_{rtc}(L(T)) \le p + m$$

 $\gamma_{rtc}(L(T)) \le p + 2$

Hence $\gamma_{rtc}(L(T)) = \lfloor p+2 \rfloor.$

Theorem 3.5: For any connected graph G, $\gamma_{rtc}(L(G) = \left|\frac{p}{2}\right|$ and the equality holds for caterpillar is which except the end vertices, the remaining vertices of degree ≥ 3 .

Let D = $\{u_1, u_2, \dots, u_m\} \subseteq V(L(G)$ be the RTCD set of $(L(G) \cdot U(G))$. When V(L(G) - D=0 then the result is obvious.

That is, $V(L(G) - D = p \ge p/2)$

Suppose $V(L(G) - D \ge 2$ then V(L(G)) - D Contains at least two vertices satisfies v-s is adjacent to S and V-S

There for 2n < p gives n < p/2

 V_6

Thus $\gamma_{rtc}(L(G) = n \le \left\lceil \frac{p}{2} \right\rceil$, Hence $\gamma_{rtc}(L(G) = \left\lceil \frac{p}{2} \right\rceil$

Theorem 3.7: For a connected Cubic graph G, $\gamma_{rtc}(L(G) = 3)$ and the equality holds for G_1 and G_2 . $\gamma_{rtc}(L(G) = \left\lceil \frac{q}{3} \right\rceil)$ for $V(G) \ge 8$

 V_1

Consider V(G) = 6

Let $V(G) = \{v_1, v_2, v_3, v_4, v_5, v_6\}$ and

 $\mathbf{D} = \{ v_{1,} v_{2,} v_{3,} \}$

V-D = { v_{4}, v_{5}, v_{6} }

Case(i): $\langle S \rangle = P_3$, $\langle V - S \rangle = P_3$

 V_1 is adjacent to V_5 and V_4 (or V_6) of V_1 is adjacent to V_5 and V_6 then V_3 is adjacent to V_4 and V_6 this V_2 is adjacent to V_4 then $G \cong G_1$, V_2 is adjacent to V_5 then $G \cong G_2$

Case(ii): $\langle S \rangle = K_3$, $\langle V - S \rangle = K_3$ if V_1 is adjacent to V_5 (or V_6 or V_4) then V_2 is adjacent to V_4 and V_3 is adjacent to V_6 . If V_1 is adjacent to V_6 then V_2 is adjacent to V_5 and V_3 is adjacent to V_4 the $G \cong G_1$

Consider V(G) = 8

Line Graph of Cubic graphs are the regular graph of order 4 and each vertex dominates 3 vertices of $(L(G) \text{ and } 3m < q \text{ then } \gamma_{rtc} (L(G) = m \le \left[\frac{q}{3}\right])$ by taking continuous dominating vertices then $\gamma_{rtc} (L(G) \ge \left[\frac{q}{3}\right])$

Observation: For any connected graph G, $V(L(G)) - D \le \sum d(v_i)$

Theorem 3.8: All the end vertices of a connected graph L(G) is very γ_{rtc} set. Further more $\gamma_{rtc} (L(G) = \left\lfloor \frac{q+1}{3} \right\rfloor$.

Proof: Let $\{v_1, v_2, \dots, v_n\}$ be the vertex set of L (G) and $\{v_1, v_2, \dots, v_i\}$ are the end vertices of L (G). Let D be any RTCD set of L (G). If there exists $D_1 \leq V(L(G)) - D$ be also a RTCD set of L (G). Assume $v_1 \in V(L(G))$ and $v_1 \notin D_1$. Consider u, w be the vertices of V (L (G)) and $u, w \notin D_1$ and $v_1 \notin D_1$. Thus v_1 lies on every path of u-w path in L (G). Since the graph is triple connected then there is two possible cases. If $u, w \in D_1$ then

$$D = \{D_1 \cup \{u, w\} \cup v_1\} \text{ be the } \gamma_{rtc} \text{ set of } L(G).$$
$$=V(L(G)) - D + 3$$
$$2D = q + 3$$
$$D = \frac{q+3}{2}.$$

 $|D| = |D_1| = 3$ gives D_1 is also be γ_{rtc} set of L(G).

If $u, w \notin D_1$ then $D = \{D_1 - \{u, w\} \cup v_1\}$

$$= V(L(G)) - D + 3$$
$$2D = q + 1$$
$$D = \frac{q+1}{2}$$

 $|D| = |D_1| = 3$ Gives D_1 is also be γ_{rtc} set of L (G).

Hence $v_1 \in D_1$, thus the end vertex v_1 is in every γ_{rtc} set of L(G).

$$|D| = \frac{q+3}{2}, |D| = \frac{q+1}{2}$$

Hence $D = \gamma_{rtc} (L(G) = \left\lceil \frac{q+1}{3} \right\rceil$

Theorem 3.9: For any connected graph G, $\gamma_{rtc}(G) + \gamma_{rtc}(L(G) \le p + 2)$.

Proof: Let $D = \{v_1, v_2, \dots, v_n\}$ be the dominating set of G. If G contains end vertices, then $\gamma_{rtc}(G) = p$. If $\{e_1, e_2, \dots, e_k\}$ be the edge set of G, let $\{u_1, u_2, \dots, u_n\}$ be the vertex set of L(G). L(G)has end if vertices then $\gamma_{rtc}(L(G) = \{u_1, u_2, \dots, u_n\} = q$ be the RTCD set of L(G). if L(G) does not contain end vertices then $\gamma_{rtc}(L(G) =$ $\{u_1, u_2, \dots, u_{n-2}\}$ be RTCD set of L(G). By line graphs, each vertex in L(G) is adjacent edges of G. hence every vertex of L(G) consistent to two adjacent vertices of G. thus $\gamma_{rtc}(G)$ + $\gamma_{rtc}(L(G) \le p+2.$

Theorem 3.10: For any connected graph G, $\gamma((L(G)) + \gamma_{rtc}(L(G) \le q)$.

Proof: Let $\{u_1, u_2, \dots, u_n\}$ be the vertex set of L (G), degi(v_i) ≥ 2 .). Let D_1 be the RTCD set of L (G), if L (G) has end vertices then $D_2 = \gamma_{rtc} (L(G)) = \{u_1, u_2, \dots, u_n\} = q$ be the RTCD set of L(G). Since V (L(G)) = E (G) = q, $\gamma((L(G)) + \gamma_{rtc} (L(G) = D_1 \cup D_2 \le q)$.

Theorem 3.11: For any connected graph G,

1.
$$\gamma_{rtc}(L(G)) + \gamma_{rtc}(\overline{L(G)}) \leq [q+1]$$

2. $\gamma_{rtc}(L(G)) \cdot \gamma_{rtc}(\overline{L(G)} \le \left\lceil \frac{q^2}{3} \right\rceil)$ for any connected graph G

3.
$$\gamma_{rtc}(L(G)) \cdot \gamma_{rtc}(\overline{L(G)} \le \left[\frac{q^2}{2}\right])$$
, if $G \cong P_n, G \not\cong P_n, n = 2,3,4,5$

REFERENCES

- [1] J. A. Bondy and U. S. R. Murty, Graph Theory, Springer, 2008.
- [2] G. Mahadevan, A. Selvam, J. Paulraj Joseph and, T. Subramanian, Triple Connected domination number of a graph, International Journal of Mathematical Combinatorics, Vol.3 (2012), 93-104.
- [3] G. Mahadevan, A. Selvam, V. G. Bhagavathi Ammal and, T. Subramanian, Restrained triple connected domination number of a graph, International Journal of Engineering Research and Application, Vol. 2, Issue 6 (2012), 225-229.
- [4] Paulraj Joseph J., Angel Jebitha M.K., Chithra Devi P. and Sudhana G. (2012): *Triple connected graphs*, Indian Journal of Mathematics and Mathematical Sciences

About the Author

Dr. G. Mahadevan M.Sc., M.Phil., M.Tech.,Ph.D, is having 21 years of teaching experience in various colleges and Universities including Head of the dept, of Mathematics, at Anna University, Tirunelveli Region, Tirunelveli . Currently he is working as Asst. Professor, Dept. of Mathematics, Gandhigram Rural Institute Deemed University, Gandhigram. He published more than 50 research articles in various International/National journals. Two scholars have been awarded their Ph.D., degree under his guidance and many students are doing their Ph.D., under his guidance. Recently he received Best Faculty Award- Senior Category in Mathematics by the former UGC Vice Chairman

Dr. Rajasekaran Pillai, at Nehru Group of Institution, Coimbatore.

V.G. Bhagavathi Ammal M.Sc.,M.Phil., M.C.A., is presently an Assistant Professor at PG Department of Mathematics, Sree Ayyappa College for Women, Nagercoil. She is pursuing Ph.D degree at Manonmaniam Sundaranar University, under the guidance of **Dr** .**G.Mahadevan**. She has more than 10 years of experience in the field of Teaching Mathematics. To her credit she published Five research papers in various International /national Journals.